Definition Polar moment of inertia
note: while has become common find term moment of inertia used describe polar , planar second moments of area, construct of engineering fields. term moment of inertia, within physics , mathematics fields, strictly mass moment of inertia, or second moment of mass, used describe massive object s resistance rotational motion, not resistance torsional deformation. while polar , planar second moments of inertia integrated on infinitesimal elements of given area in two-dimensional cross-section, mass moment of inertia integrated on infinitesimal elements of mass in three-dimensional space occupied object. put, polar , planar second moments of inertia indication of rigidity, , mass moment of inertia rotational motion resistance of massive object.
the equation describing polar moment of inertia multiple integral on cross-sectional area,
a
{\displaystyle a}
, of object.
j
=
∬
a
ρ
2
d
a
{\displaystyle j=\iint \limits _{a}\rho ^{2}da}
where,
ρ
{\displaystyle \rho }
distance element
d
a
{\displaystyle da}
.
substituting
x
{\displaystyle x}
,
y
{\displaystyle y}
components, using pythagorean theorem:
j
=
∬
a
(
x
2
+
y
2
)
d
x
d
y
{\displaystyle j=\iint \limits _{a}(x^{2}+y^{2})dxdy}
j
=
∬
a
x
2
d
x
d
y
+
∬
a
y
2
d
x
d
y
{\displaystyle j=\iint \limits _{a}x^{2}dxdy+\iint \limits _{a}y^{2}dxdy}
given planar second moments of area equations, where:
i
x
=
∬
a
x
2
d
x
d
y
{\displaystyle i_{x}=\iint \limits _{a}x^{2}dxdy}
i
y
=
∬
a
y
2
d
x
d
y
{\displaystyle i_{y}=\iint \limits _{a}y^{2}dxdy}
it shown polar moment of inertia can described summation of
x
{\displaystyle x}
,
y
{\displaystyle y}
planar moments of inertia,
i
x
{\displaystyle i_{x}}
,
i
y
{\displaystyle i_{y}}
∴
j
=
i
z
=
i
x
+
i
y
{\displaystyle \therefore j=i_{z}=i_{x}+i_{y}}
this shown in perpendicular axis theorem. objects have rotational symmetry, such cylinder or hollow tube, equation can simplified to:
j
=
2
i
x
{\displaystyle j=2i_{x}}
or
j
=
2
i
y
{\displaystyle j=2i_{y}}
for circular section radius r:
i
z
=
∫
0
2
π
∫
0
r
ρ
2
ρ
d
ρ
d
ϕ
=
π
r
4
2
{\displaystyle i_{z}=\int _{0}^{2\pi }\int _{0}^{r}\rho ^{2}\rho \,d\rho \,d\phi ={\frac {\pi r^{4}}{2}}}
^ http://www.efunda.com/math/areas/momentofinertia.cfm
Comments
Post a Comment