Definition Polar moment of inertia






note: while has become common find term moment of inertia used describe polar , planar second moments of area, construct of engineering fields. term moment of inertia, within physics , mathematics fields, strictly mass moment of inertia, or second moment of mass, used describe massive object s resistance rotational motion, not resistance torsional deformation. while polar , planar second moments of inertia integrated on infinitesimal elements of given area in two-dimensional cross-section, mass moment of inertia integrated on infinitesimal elements of mass in three-dimensional space occupied object. put, polar , planar second moments of inertia indication of rigidity, , mass moment of inertia rotational motion resistance of massive object.

the equation describing polar moment of inertia multiple integral on cross-sectional area,



a


{\displaystyle a}

, of object.







j
=



a



ρ

2


d
a


{\displaystyle j=\iint \limits _{a}\rho ^{2}da}



where,



ρ


{\displaystyle \rho }

distance element



d
a


{\displaystyle da}

.


substituting



x


{\displaystyle x}

,



y


{\displaystyle y}

components, using pythagorean theorem:







j
=



a


(

x

2


+

y

2


)
d
x
d
y


{\displaystyle j=\iint \limits _{a}(x^{2}+y^{2})dxdy}








j
=



a



x

2


d
x
d
y
+



a



y

2


d
x
d
y


{\displaystyle j=\iint \limits _{a}x^{2}dxdy+\iint \limits _{a}y^{2}dxdy}



given planar second moments of area equations, where:








i

x


=



a



x

2


d
x
d
y


{\displaystyle i_{x}=\iint \limits _{a}x^{2}dxdy}







i

y


=



a



y

2


d
x
d
y


{\displaystyle i_{y}=\iint \limits _{a}y^{2}dxdy}



it shown polar moment of inertia can described summation of



x


{\displaystyle x}

,



y


{\displaystyle y}

planar moments of inertia,




i

x




{\displaystyle i_{x}}

,




i

y




{\displaystyle i_{y}}








j
=

i

z


=

i

x


+

i

y




{\displaystyle \therefore j=i_{z}=i_{x}+i_{y}}



this shown in perpendicular axis theorem. objects have rotational symmetry, such cylinder or hollow tube, equation can simplified to:







j
=
2

i

x




{\displaystyle j=2i_{x}}

or



j
=
2

i

y




{\displaystyle j=2i_{y}}



for circular section radius r:








i

z


=



0


2
π





0


r



ρ

2


ρ

d
ρ

d
ϕ
=



π

r

4



2




{\displaystyle i_{z}=\int _{0}^{2\pi }\int _{0}^{r}\rho ^{2}\rho \,d\rho \,d\phi ={\frac {\pi r^{4}}{2}}}






^ http://www.efunda.com/math/areas/momentofinertia.cfm






Comments

Popular posts from this blog

History VMFA-121

Biography Pavel Yablochkov

Discography Three Man Army