Derivation of the Hubble parameter Hubble's law







start friedmann equation:








h

2





(




a
˙


a


)


2


=



8
π
g

3


ρ




k

c

2




a

2




+



Λ

c

2



3


,


{\displaystyle h^{2}\equiv \left({\frac {\dot {a}}{a}}\right)^{2}={\frac {8\pi g}{3}}\rho -{\frac {kc^{2}}{a^{2}}}+{\frac {\lambda c^{2}}{3}},}



where



h


{\displaystyle h}

hubble parameter,



a


{\displaystyle a}

scale factor, g gravitational constant,



k


{\displaystyle k}

normalised spatial curvature of universe , equal −1, 0, or +1, ,



Λ


{\displaystyle \lambda }

cosmological constant.


matter-dominated universe (with cosmological constant)

if universe matter-dominated, mass density of universe



ρ


{\displaystyle \rho }

can taken include matter so







ρ
=

ρ

m


(
a
)
=



ρ


m

0





a

3




,


{\displaystyle \rho =\rho _{m}(a)={\frac {\rho _{m_{0}}}{a^{3}}},}



where




ρ


m

0






{\displaystyle \rho _{m_{0}}}

density of matter today. know nonrelativistic particles mass density decreases proportional inverse volume of universe, equation above must true. can define (see density parameter




Ω

m




{\displaystyle \omega _{m}}

)








ρ

c


=



3

h

2




8
π
g



;


{\displaystyle \rho _{c}={\frac {3h^{2}}{8\pi g}};}









Ω

m






ρ


m

0





ρ

c




=



8
π
g


3

h

0


2






ρ


m

0




;


{\displaystyle \omega _{m}\equiv {\frac {\rho _{m_{0}}}{\rho _{c}}}={\frac {8\pi g}{3h_{0}^{2}}}\rho _{m_{0}};}



so



ρ
=

ρ

c



Ω

m



/


a

3


.


{\displaystyle \rho =\rho _{c}\omega _{m}/a^{3}.}

also, definition,








Ω

k







k

c

2




(

a

0



h

0



)

2







{\displaystyle \omega _{k}\equiv {\frac {-kc^{2}}{(a_{0}h_{0})^{2}}}}



and








Ω

Λ






Λ

c

2




3

h

0


2





,


{\displaystyle \omega _{\lambda }\equiv {\frac {\lambda c^{2}}{3h_{0}^{2}}},}



where subscript nought refers values today, ,




a

0


=
1


{\displaystyle a_{0}=1}

. substituting of friedmann equation @ start of section , replacing



a


{\displaystyle a}





a
=
1

/

(
1
+
z
)


{\displaystyle a=1/(1+z)}

gives








h

2


(
z
)
=

h

0


2



(

Ω

m


(
1
+
z

)

3


+

Ω

k


(
1
+
z

)

2


+

Ω

Λ


)

.


{\displaystyle h^{2}(z)=h_{0}^{2}\left(\omega _{m}(1+z)^{3}+\omega _{k}(1+z)^{2}+\omega _{\lambda }\right).}



matter- , dark energy-dominated universe

if universe both matter-dominated , dark energy- dominated, above equation hubble parameter function of equation of state of dark energy. now:







ρ
=

ρ

m


(
a
)
+

ρ

d
e


(
a
)
,


{\displaystyle \rho =\rho _{m}(a)+\rho _{de}(a),}



where




ρ

d
e




{\displaystyle \rho _{de}}

mass density of dark energy. definition, equation of state in cosmology



p
=
w
ρ

c

2




{\displaystyle p=w\rho c^{2}}

, , if substituted fluid equation, describes how mass density of universe evolves time, then










ρ
˙



+
3




a
˙


a



(
ρ
+


p

c

2




)

=
0
;


{\displaystyle {\dot {\rho }}+3{\frac {\dot {a}}{a}}\left(\rho +{\frac {p}{c^{2}}}\right)=0;}









d
ρ

ρ


=

3



d
a

a



(
1
+
w
)

.


{\displaystyle {\frac {d\rho }{\rho }}=-3{\frac {da}{a}}\left(1+w\right).}



if w constant, then







ln


ρ

=

3

(
1
+
w
)

ln


a

;


{\displaystyle \ln {\rho }=-3\left(1+w\right)\ln {a};}






ρ
=

a


3

(
1
+
w
)



.


{\displaystyle \rho =a^{-3\left(1+w\right)}.}



therefore, dark energy constant equation of state w,




ρ

d
e


(
a
)
=

ρ

d
e
0



a


3

(
1
+
w
)





{\displaystyle \rho _{de}(a)=\rho _{de0}a^{-3\left(1+w\right)}}

. if substituted friedman equation in similar way before, time set



k
=
0


{\displaystyle k=0}

, assumes spatially flat universe, (see shape of universe)








h

2


(
z
)
=

h

0


2



(

Ω

m


(
1
+
z

)

3


+

Ω

d
e


(
1
+
z

)

3

(
1
+
w
)



)

.


{\displaystyle h^{2}(z)=h_{0}^{2}\left(\omega _{m}(1+z)^{3}+\omega _{de}(1+z)^{3\left(1+w\right)}\right).}



if dark energy derives cosmological constant such introduced einstein, can shown



w
=

1


{\displaystyle w=-1}

. equation reduces last equation in matter-dominated universe section,




Ω

k




{\displaystyle \omega _{k}}

set zero. in case initial dark energy density




ρ

d
e
0




{\displaystyle \rho _{de0}}

given by








ρ

d
e
0


=



Λ

c

2




8
π
g





{\displaystyle \rho _{de0}={\frac {\lambda c^{2}}{8\pi g}}}

,




Ω

d
e


=

Ω

Λ


.


{\displaystyle \omega _{de}=\omega _{\lambda }.}



if dark energy not have constant equation-of-state w, then








ρ

d
e


(
a
)
=

ρ

d
e
0



e


3




d
a

a



(
1
+
w
(
a
)
)



,


{\displaystyle \rho _{de}(a)=\rho _{de0}e^{-3\int {\frac {da}{a}}\left(1+w(a)\right)},}



and solve this,



w
(
a
)


{\displaystyle w(a)}

must parametrized, example if



w
(
a
)
=

w

0


+

w

a


(
1

a
)


{\displaystyle w(a)=w_{0}+w_{a}(1-a)}

, giving








h

2


(
z
)
=

h

0


2



(

Ω

m



a


3


+

Ω

d
e



a


3

(
1
+

w

0


+

w

a


)




e


3

w

a


(
1

a
)


)

.


{\displaystyle h^{2}(z)=h_{0}^{2}\left(\omega _{m}a^{-3}+\omega _{de}a^{-3\left(1+w_{0}+w_{a}\right)}e^{-3w_{a}(1-a)}\right).}



other ingredients have been formulated recently.








Comments

Popular posts from this blog

Discography Three Man Army

Biography Pavel Yablochkov

History VMFA-121