Basic properties Look-and-say sequence
1 basic properties
1.1 growth
1.2 digits presence limitation
1.3 cosmological decay
1.4 growth in length
1.4.1 polynomial returning conway s constant
basic properties
growth
the sequence grows indefinitely. in fact, variant defined starting different integer seed number (eventually) grow indefinitely, except degenerate sequence: 22, 22, 22, 22, … (sequence a010861 in oeis)
digits presence limitation
no digits other 1, 2, , 3 appear in sequence, unless seed number contains such digit or run of more 3 of same digit.
cosmological decay
conway s cosmological theorem asserts every sequence splits ( decays ) sequence of atomic elements , finite subsequences never again interact neighbors. there 92 elements containing digits 1, 2, , 3 only, john conway named after chemical elements uranium, calling sequence audioactive. there 2 transuranic elements each digit other 1, 2, , 3.
growth in length
the terms grow in length 30% per generation. in particular, if ln denotes number of digits of n-th member of sequence, limit of ratio
l
n
+
1
l
n
{\displaystyle {\frac {l_{n+1}}{l_{n}}}}
exists , given by
lim
n
→
∞
l
n
+
1
l
n
=
λ
{\displaystyle \lim _{n\to \infty }{\frac {l_{n+1}}{l_{n}}}=\lambda }
where λ = 1.303577269034... (sequence a014715 in oeis) algebraic number of degree 71. fact proven conway, , constant λ known conway s constant. same result holds every variant of sequence starting seed other 22.
polynomial returning conway s constant
conway s constant unique positive real root of following polynomial: (sequence a137275 in oeis)
x
71
−
x
69
−
2
x
68
−
x
67
+
2
x
66
+
2
x
65
+
x
64
−
x
63
−
x
62
−
x
61
−
x
60
−
x
59
+
2
x
58
+
5
x
57
+
3
x
56
−
2
x
55
−
10
x
54
−
3
x
53
−
2
x
52
+
6
x
51
+
6
x
50
+
x
49
+
9
x
48
−
3
x
47
−
7
x
46
−
8
x
45
−
8
x
44
+
10
x
43
+
6
x
42
+
8
x
41
−
5
x
40
−
12
x
39
+
7
x
38
−
7
x
37
+
7
x
36
+
x
35
−
3
x
34
+
10
x
33
+
x
32
−
6
x
31
−
2
x
30
−
10
x
29
−
3
x
28
+
2
x
27
+
9
x
26
−
3
x
25
+
14
x
24
−
8
x
23
−
7
x
21
+
9
x
20
+
3
x
19
−
4
x
18
−
10
x
17
−
7
x
16
+
12
x
15
+
7
x
14
+
2
x
13
−
12
x
12
−
4
x
11
−
2
x
10
+
5
x
9
+
x
7
−
7
x
6
+
7
x
5
−
4
x
4
+
12
x
3
−
6
x
2
+
3
x
−
6
{\displaystyle {\begin{aligned}&\,\,\,\,\,\,\,x^{71}&&&&-x^{69}&&-2x^{68}&&-x^{67}&&+2x^{66}&&+2x^{65}&&+x^{64}&&-x^{63}\\&-x^{62}&&-x^{61}&&-x^{60}&&-x^{59}&&+2x^{58}&&+5x^{57}&&+3x^{56}&&-2x^{55}&&-10x^{54}\\&-3x^{53}&&-2x^{52}&&+6x^{51}&&+6x^{50}&&+x^{49}&&+9x^{48}&&-3x^{47}&&-7x^{46}&&-8x^{45}\\&-8x^{44}&&+10x^{43}&&+6x^{42}&&+8x^{41}&&-5x^{40}&&-12x^{39}&&+7x^{38}&&-7x^{37}&&+7x^{36}\\&+x^{35}&&-3x^{34}&&+10x^{33}&&+x^{32}&&-6x^{31}&&-2x^{30}&&-10x^{29}&&-3x^{28}&&+2x^{27}\\&+9x^{26}&&-3x^{25}&&+14x^{24}&&-8x^{23}&&&&-7x^{21}&&+9x^{20}&&+3x^{19}&&-4x^{18}\\&-10x^{17}&&-7x^{16}&&+12x^{15}&&+7x^{14}&&+2x^{13}&&-12x^{12}&&-4x^{11}&&-2x^{10}&&+5x^{9}\\&&&+x^{7}&&-7x^{6}&&+7x^{5}&&-4x^{4}&&+12x^{3}&&-6x^{2}&&+3x&&-6\end{aligned}}}
in original article, conway gives incorrect value polynomial, writing - instead of + in front of
x
35
{\displaystyle x^{35}}
. however, value of λ given in article correct.
Comments
Post a Comment